Synthesis of Diketones

Cascade Carbonylation Methods Leading to β-Diketones and β-Functionalized δ-Diketones**

Katsukiyo Miura, Mami Tojino, Naoki Fujisawa, Akira Hosomi,* and Ilhyong Ryu*

The development of efficient synthetic strategies for the onepot generation of multiple bonds is highly desirable. In this regard, radical strategies continue to attract much attention because of their considerable potential in this area. [1,2] Most viable cascade processes are, however, intramolecular sequences rather than the inherently more general intermolecular reactions. Herein we report a novel efficient intermolecular cascade sequence based on tin enolate mediated radical carbonylations, [3,4] in which three or four carboncontaining compounds are coupled to afford β -diketones \mathbf{A} or β -functionalized δ -diketones \mathbf{B} , respectively (Scheme 1).

Scheme 1. Precursors for the synthesis of β-diketones and β-functionalized δ -diketones.

The three-component radical coupling reaction was affected by combining octyl iodide (1a), carbon monoxide, and a tin enolate to give the anticipated β -diketone 4a in 64% yield after isolation by flash chromatography on silica gel. The reaction with aromatic iodide 1e also worked well and gave 4b (Scheme 2). These results clearly demonstrated that tin enolates act as potentially useful acceptors of acyl radicals.

[*] Dr. K. Miura, N. Fujisawa, Prof. A. Hosomi Department of Chemistry, Graduate School of Pure and Applied Sciences University of Tsukuba Tsukuba, Ibaraki 305, 8571 (Japan)

Tsukuba, Ibaraki 305-8571 (Japan)

Fax: (+81) 298-53-4237

E-mail: hosomi@chem.tsukuba.ac.jp

M. Tojino, Prof. I. Ryu

Department of Chemistry, Faculty of Arts and Sciences

Osaka Prefecture University Sakai, Osaka 599-8531 (Japan)

Fax: (+81) 72-254-9695

E-mail: ryu@ms.cias.osakafu-u.ac.jp

- [**] This work was supported by a Grant-in-Aid for Scientific Research (B) from the Ministry of Education, Culture, Sports, Science, and Technology, Government of Japan. A.H. acknowledges support from CREST, Science and Technology Corporation (JST).
- Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

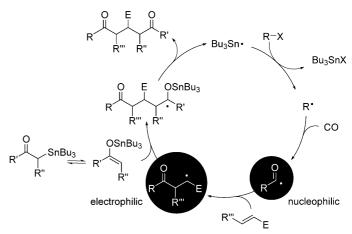
Zuschriften

1a 3b (keto/enol <1:99)
0.027 M 2.1 equiv
$$\frac{AIBN}{C_6H_6, 90 \, ^{\circ}C, 8 \, h}$$
 50 atm $\frac{AIBN, C_6H_6}{90 \, ^{\circ}C, 8 \, h}$ 50 atm $\frac{AIBN, C_6H_6}{90 \, ^{\circ}C, 8 \, h}$ 50 atm $\frac{AIBN, C_6H_6}{90 \, ^{\circ}C, 8 \, h}$ 50 atm $\frac{AIBN, C_6H_6}{90 \, ^{\circ}C, 8 \, h}$ 50 atm $\frac{AIBN, C_6H_6}{90 \, ^{\circ}C, 8 \, h}$ 50 atm $\frac{AIBN, C_6H_6}{90 \, ^{\circ}C, 8 \, h}$ 2 equiv

Scheme 2. Tin enolate mediated carbonylative three-component coupling reactions.

Next, we examined a mixed alkene system, comprised of tin enolates and electron-deficient alkenes, in which we expected that nucleophilic acyl radicals would prefer electron-deficient alkenes rather than electron-rich tin enolates, providing a useful method for the synthesis of β -functionalized δ -diketones.

We were pleased to observe that the envisaged four-component coupling reaction occurred as expected. When a solution of 1-iodooctane (1a; 0.6 mmol, 0.025 M) in benzene, acrylonitrile (2a; 0.7 mmol), 1-phenyl-1-(tributylstannyloxy)-ethene (3a; 1.3 mmol; 74:26 keto/enol isomers), and AIBN (0.2 mmol) were heated at 90 °C for 8 h under CO (80 atm), the reaction proceeded cleanly to give the envisaged β -cyano-substituted δ -diketone 4c in 78 % yield after isolation by flash chromatography on silica gel (Scheme 3). The formation of β -diketone was not detected in the crude reaction mixture.


Scheme 3. Tin enolate mediated carbonylative four-component coupling reactions.

An expanded series of substrates **1** and alkenes **2** reveals several generalities of the present four-component coupling reaction (Table 1). Both methyl vinyl ketone (**2b**) and ethyl acrylate (**2c**) worked well to give the corresponding 3-acetyl-1,5-diketone **4d** and 3-ethoxycarbonyl-1,5-diketone **4e**, respectively (Table 1, entries 1 and 2). On the other hand, the use of acrolein was unsuccessful owing to its preferential aldol condensation with the tin enolate. Vinyl sulfone **2d** gave the corresponding product **4f** in rather modest yield (Table 1, entry 3). In the reaction with *N*-crotonyloxazolidi-

none (2e), the corresponding four-component coupling product 4g was obtained as a 1:1 mixture of diastereomers (Table 1, entry 4). In the case of 1f, 5-exo radical cyclization preceded the intermolecular reaction to give 4o (Table 1, entry 12).

Although tin enolates $\bf 3a$ and $\bf 3b$ derived from α -tetralone and acetophenone, respectively, exhibited excellent reactivity, the chain propagation ability of tin enolates $\bf 3c$ and $\bf 3d$ derived from cyclohexanone and pinacolone, respectively, appeared to be less efficient. However, the use of larger excesses of these enolates compensated for the modest reactivity (Table 1, entries 6 and 7).

The formation of 1,5-diketones **4** can be explained by the free-radical chain-propagation mechanism outlined in Scheme 4. Two key factors that made the present cascade

Scheme 4. Radical chain mechanism for the four-component coupling reaction

reactions possible are as follows: 1) The key acyl radical, which is nucleophilic by nature, favors addition to electron-deficient alkenes rather than to electron-rich tin enolates, and the resulting alkyl radical is electrophilic enough to prefer electron-rich tin enolates. 2) $S_{\rm H}2'$ -type reaction of the resulting radical with tin O-enolates would be expected to shift the direction of the equilibrium with C-enolates.

In summary, the use of the tin enolates as radical mediators for radical carbonylations led to the development of novel intermolecular cascade reactions, which combine three or four carbon-containing compounds in a single process. This procedure allows access to variously functionalized $\beta\text{-}$ and $\delta\text{-}$ diketones from readily available starting materials.

Experimental Section

General procedure: Benzene (26 mL), 1a (154 mg, 0.6 mmol), 2a (41 mg, 0.7 mmol), 3a (522 mg, 1.3 mmol), and AIBN (31 mg, 0.2 mmol), were placed in a 50 -mL stainless-steel autoclave equipped with an inserted glass liner. The autoclave was closed and purged with carbon monoxide ($3 \times 10 \text{ atm}$). The autoclave was then charged with CO (80 atm) and heated, with stirring, at 90 °C for 8 h. After excess CO was discharged at room temperature, the solvent was evaporated, and the residue was purified by chromatography on silica gel (hexane,

Table 1: Tin enolate mediated carbonylative four-component coupling reactions. [a]

Entry	1	2	3 ^[b]	4	Yield [%] ^[c]
1	а	O 2b	a	C_8H_{17} Ad Ph	74
2	a	OEt O 2c	a	O OEt O OEt O Ph	80
3	a	SO ₂ Ph	a	C ₈ H ₁₇ SO ₂ Ph O Ph	50
4	a	N O O	a	C ₈ H ₁₇ Ph O	64 (d.r. 50:50) ^[d]
5	a	a	OSnBu ₃	C ₈ H ₁₇ O CN O 4h	92 (d.r. 60:40) ^[d]
5 ^[e]	a	a	OSnBu ₃	C ₀ H ₁₇ O CN O	56 (d.r. 57:43) ^[d]
7 ^[f]	a	a	OSnBu ₃	C ₈ H ₁₇ O CN O 4j	56
3	Br 1b	c	a	O O OEt O O OEt	73 (d.r. 50:50) ^{[d}
9	O _{1c}	a	a	O CN O Ph	71
10	Id 1d	a	a	O CN O 4m	76
11	1 _e	a	a	O CN O	72
12	Br 1f	a	a	Ts O CN O	88 (d.r. 50:50) ^{[d}

[a] Conditions: 1 (0.5 mmol), 2 (0.6 mmol), 3 (1 mmol), AIBN (0.2–0.4 equiv), benzene (20 mL), CO (80–85 atm), 90 °C, 8 h. [b] 3a: O-Sn/C-Sn=26:74; 3b: O-Sn/C-Sn=99:1; 3c: O-Sn/C-Sn=99:1; 3d: O-Sn/C-Sn=1:99. [c] Yields of products isolated by flash chromatography on SiO₂. Products 4d, 4f, 4g, and 4i were further purified by preparative HPLC. [d] Determined by ¹H NMR spectroscopy. [e] 3d: 3 equiv. [f] 3c: 6 equiv. AIBN=2,2′-azobisisobutyronitrile; Ts=para-toluenesulfonyl.

then hexane/Et₂O 7:3). The hexane eluant contained tributyltin iodide, and the hexane/Et₂O eluant contained pure **4c** (157 mg, 78%).

Received: January 8, 2004 [Z53702]

Keywords: carbonylation \cdot enolates \cdot ketones \cdot multicomponent reactions \cdot tin

- [1] For reviews on radical chemistry, see:
 a) Radicals in Organic Synthesis, Vols. 1
 and 2 (Eds.: P. Renaud, M. P. Sibi),
 Wiley-VCH, Weinheim, 2001; b) D. P.
 Curran, N. A. Porter, B. Giese, Stereochemistry of Radical Reactions, VCH,
 Weinheim, 1996; c) W. B. Motherwell, D.
 Crich, Free Radical Chain Reactions in
 Organic Synthesis, Academic, London,
 1992.
- [2] For reviews on radical cascade reactions, see: a) M. Malacria, *Chem. Rev.* 1996, 96, 289; b) I. Ryu, N. Sonoda, D. P. Curran, *Chem. Rev.* 1996, 96, 177.
- [3] For recent work on the use of tin enolates in radical reactions, see: a) K. Miura, N. Fujisawa, H. Saito, D. Wang, A. Hosomi, *Org. Lett.* 2001, 3, 2591; b) K. Miura, H. Saito, N. Fujisawa, D. Wang, H. Nishikori, A. Hosomi, *Org. Lett.* 2001, 3, 4055; for earlier work, see: c) G. A. Russel, L. L. Herold, *J. Org. Chem.* 1985, 50, 1037; d) Y. Watanabe, T. Yoneda, Y. Ueno, T. Toru, *Tetrahedron Lett.* 1990, 31, 6669.
- [4] For reviews on acyl radicals and radical carbonylations, see: a) I. Ryu, N. Sonoda, Angew. Chem. 1996, 108, 1140; Angew. Chem. Int. Ed. Engl. 1996, 35, 1050; b) I. Ryu, Chem. Soc. Rev. 2001, 30, 16; c) C. Chatgilialoglu, D. Crich, M. Komatsu, I. Ryu, Chem. Rev. 1999, 99, 1991; Also see recent work: d) I. Ryu, H. Miyazato, H. Kuriyama, K. Matsu, M. Tojino, T. Fukuyama, S. Minakata, M. Komatsu, J. Am. Chem. Soc. 2003, 125, 5632; e) I. Ryu, S. Kreimerman, F. Araki, S. Nishitani, Y. Oderaotoshi, S. Minakata, M. Komatsu, J. Am. Chem. Soc. 2002, 124, 3813.
- [5] For the related S_H2' reactions with allyltin compounds, see: a) I. Ryu, H. Yamazaki, K. Kusano, A. Ogawa, N. Sonoda, J. Am. Chem. Soc. 1991, 113, 8558; b) I. Ryu, H. Yamazaki, A. Ogawa, N. Kambe, N. Sonoda, J. Am. Chem. Soc. 1993, 115, 1187; c) I. Ryu, T. Niguma, S. Minakata, M. Komatsu, Z. Luo, D. P. Curran, Tetrahedron Lett. 1999, 40, 2367.
- [6] a) Y. Yamamoto, H. Yatagai, K. Maruyama, J. Chem. Soc. Chem. Commun. 1981, 162; b) S. Shenvi, J. K. Stille, Tetrahedron Lett. 1982, 23, 627; c) K. Kobayashi, M. Kawanishi, T. Hitomi, S. Kozima, Chem. Lett. 1983, 851.